

 Navigation

 	
 index

 	
 next |

 	Nengo SpiNNaker 0.0a1 documentation

SpiNNaker backend for Nengo

Nengo [https://github.com/ctn-waterloo/nengo/] is a suite of software used
to build and simulate large-scale brain models using the methods of the
Neural Engineering Framework [http://compneuro.uwaterloo.ca/research/nef.html].
SpiNNaker [https://apt.cs.manchester.ac.uk/projects/SpiNNaker] is a
neuromorphic hardware platform designed to run large-scale spiking neural
models in real-time.
Using SpiNNaker to simulate Nengo models allows you to run models
in real-time and interface with external hardware devices such as robots.

	Installation
	Requirements

	Basic Installation

	Developer Installation

If you’re new to Nengo we recommend reading through the Nengo documentation and
trying a few examples before progressing on to running examples on SpiNNaker.

	Running Nengo models on SpiNNaker
	Nengo SpiNNaker Simulator

Some hardware is already supported by Nengo SpiNNaker and more will be added
over time.

	“PushBot” [https://github.com/ctn-waterloo/nengo_pushbot] - Neuroscientific System Theory (NST) [http://www.nst.ei.tum.de]

While Ensembles and various other components are simulated directly on the
SpiNNaker board this is, in general, not possible for Nodes, which may be any
arbitrary function.

	Running Nodes directly on SpiNNaker
	Function-of-time Nodes

	Writing a SpiNNaker executable for a Node

	Using the binary

	Configuring the executable instances

	Writing new Input/Output Handlers
	Node Builders

	Node Communicators

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, APT Group, School of Computer Science, University of Manchester and CNRGlab @ UWaterloo.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nengo SpiNNaker 0.0a1 documentation

Installation

Requirements

Nengo SpiNNaker requires that you have installed appropriate versions of
Nengo [https://github.com/ctn-waterloo/nengo] and the SpiNNaker tools
package [https://spinnaker.cs.manchester.ac.uk].

Basic Installation

We’re working towards providing the Nengo SpiNNaker package on PyPi at which
point you will be able to:

pip install nengo_spinnaker

For now, like Nengo itself, do a developer installation.

Developer Installation

If you plan to make changes to Nengo SpiNNaker you should clone its git
repository and install from it:

git clone https://github.com/ctn-waterloo/nengo_spinnaker
cd nengo_spinnaker
python setup.py develop --user

If you’re in a virtualenv you can omit the --user flag.

Building the SpiNNaker binaries

If you installed the Nengo SpiNNaker package from source you will need to go
through a few additional steps prior to running Nengo models. These steps
build the executable binaries which are loaded to the SpiNNaker machine.

Change to the root directory of the SpiNNaker package
Edit `spinnaker_tools/setup` to point at your ARM cross-compilers
source ./setup
make

Now move to the root directory of the Nengo SpiNNaker package
cd spinnaker_components
make

 Copyright 2014, APT Group, School of Computer Science, University of Manchester and CNRGlab @ UWaterloo.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nengo SpiNNaker 0.0a1 documentation

Running Nengo models on SpiNNaker

If this is how your Nengo model currently works:

import nengo

model = nengo.Network()
with model:
 # ... Build a model
 a = nengo.Ensemble(100, dimensions=1)

sim = nengo.Simulator(model)
sim.run(10.)

Then porting it to Nengo SpiNNaker requires very few changes:

import nengo
import nengo_spinnaker

model = nengo.Network()
with model:
 # ... Build a model
 a = nengo.Ensemble(100, dimensions=1)

sim = nengo_spinnaker.Simulator(model)
sim.run(10.)

Nengo SpiNNaker Simulator

 Copyright 2014, APT Group, School of Computer Science, University of Manchester and CNRGlab @ UWaterloo.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Nengo SpiNNaker 0.0a1 documentation

Running Nodes directly on SpiNNaker

By default Nodes are executed on the host computer and communicate with the
SpiNNaker board to transmit and receive values. The result can be undesirable
sampling of Node input and output.

For example:

import nengo
import nengo_spinnaker

model = nengo.Network()
with model:
 n = nengo.Node(np.sin)
 e = nengo.Ensemble(nengo.LIF(100), 1)
 p = nengo.Probe(e)

 nengo.Connection(n, e)

sim = nengo_spinnaker.Simulator(model)
sim.run(10.)

Results in:

[image: http://amundy.co.uk/assets/img/nengo_spinnaker/host-node.png]
 [http://amundy.co.uk/assets/img/nengo_spinnaker/host-node.png]For Nodes which are solely functions of time it is possible to precompute the
output of the Node and play this back. Nodes with a constant output value and
no input are automatically added to the bias current of Ensemble which they
feed. Finally, more complex Nodes may be implemented as SpiNNaker executables
and directly executed on the SpiNNaker hardware.

Function-of-time Nodes

Nodes which are purely functions of time may be precomputed for the duration of
the simulation (or the period of the function if appropriate) and played back
during the simulation. Nodes you wish to be executed in this way must be
marked with an appropriate directive:

As before...

Create the configuration and configure `n` as being f(t)
config = nengo_spinnaker.Config()
config[n].f_of_t = True # Mark Node as being a function of time
config[n].f_period = 2*np.pi # Mark the period of the function

Pass the configuration to the simulator
sim = nengo_spinnaker.Simulator(model, config=config)

Results in:

[image: http://amundy.co.uk/assets/img/nengo_spinnaker/spinn-node.png]
 [http://amundy.co.uk/assets/img/nengo_spinnaker/spinn-node.png]
	The two directives are:

	
	f_of_t marks a Node as being precomputable. This is not checked - be
careful!

	f_period marks the period of the function in seconds. If this is None
then the Node will be precomputed for the entire duration of the simulation
- it is possible to run out of memory. Again, this cannot be trivially
validated.

Writing a SpiNNaker executable for a Node

Using the binary

Configuring the executable instances

Writing new Input/Output Handlers

Input/Output Handlers manage the communication between the host and the
SpiNNaker machine running the simulation. This entails two tasks:

	Modifying the SpiNNaker model to include appropriate executables and
connections for handling Node input/output.

	Providing functions for getting input for Nodes and setting Node output.

The first of these tasks is handled by “Node Builders”, the second by “Node
Communicators”.

Node Builders

When building a model for simulation a nengo_spinnaker.builder.Builder
delegates the tasks of building Nodes and the connections into or out of Nodes
to a Node Builder.

Additionally, the nengo_spinnaker.Simulator will expect the Node
Builder to provide a context manager for the Node Communicator.

A Node Builder is expected to look like the following:

	
class GenericNodeBuilder

	
	
get_node_in_vertex(self, builder, connection)

	Get the PACMAN vertex where input to the Node should be sent.

	Parameters:	
	builder – A nengo_spinnaker.builder.Builder instance providing
add_vertex and add_edge methods.

	connection – A nengo.Connection object which specifies the connection
being built. The Node will be referred to by connection.post.

	Returns:	The PACMAN vertex where input for the Node at the end of the
given connection should be sent.

It is expected that this function will need to create new PACMAN
vertices and add them to the graph using the builder object.

	
get_node_out_vertex(self, builder, connection)

	Get the PACMAN vertex where output from the Node can be expected to
arrive in the SpiNNaker network.

	Parameters:	
	builder – A nengo_spinnaker.builder.Builder instance providing
add_vertex and add_edge methods.

	connection – A nengo.Connection object which specifies the connection
being built. The Node will be referred to by connection.pre.

	Returns:	The PACMAN vertex where output from the Node will appear.

It is expected that this function will need to create new PACMAN
vertices and add them to the graph using the builder object.

	
build_node(self, builder, node)

	Perform any tasks necessary to build a Node which is neither constant
nor a function of time.

	Parameters:	
	builder – A nengo_spinnaker.builder.Builder instance providing
add_vertex and add_edge methods.

	node – The nengo.Node object for which to provide IO.

Note

In all current implementations this method does nothing, it is
generally more useful to instantiate any vertices or edges when
connecting to or from a Node.

	
io

	A reference to the Communicator object.

	
__enter__(self)

	Create and return a Communicator to handle input/output for Nodes.

	Returns:	A Communicator of the appropriate type.

	
__exit__(self, exception_type, exception_value, traceback)

	Perform any tasks necessary to stop the Communicator from running.

Node Communicators

The nengo_spinnaker.Simulator delegates the task of getting Node
input and setting Node output to a communicator which is generated by the Node
Builder.

A Node Communicator is required to look like the following:

	
class GenericNodeCommunicator

	
Warning

It is required that the Communicator be thread safe. Each Node is
independently responsible for getting its input and setting its output
and each Node will be executed within its own thread.

	
start(self)

	Start execution of the communicator thread.

	
get_node_input(self, node)

	Return the latest received input for the given Node.

	Parameters:	node – A nengo.Node for which input is desired.

	Returns:	The latest received value as a Numpy array, or
None if no data has yet been received from the Node.

	Raises:	KeyError if the Node is not recognised by the
Communicator.

	
set_node_output(self, node, output)

	Transmit the output of the Node to the SpiNNaker board.

	Parameters:	
	node – A nengo.Node for which output is being
provided.

	output – The latest output from the Node.

	Raises:	KeyError if the Node is not recognised by the
Communicator.

 Copyright 2014, APT Group, School of Computer Science, University of Manchester and CNRGlab @ UWaterloo.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Nengo SpiNNaker 0.0a1 documentation

Index

 _
 | B
 | G
 | I
 | S

_

 	

 	__enter__() (GenericNodeBuilder method)

 	

 	__exit__() (GenericNodeBuilder method)

B

 	

 	build_node() (GenericNodeBuilder method)

G

 	

 	GenericNodeBuilder (built-in class)

 	GenericNodeCommunicator (built-in class)

 	get_node_in_vertex() (GenericNodeBuilder method)

 	

 	get_node_input() (GenericNodeCommunicator method)

 	get_node_out_vertex() (GenericNodeBuilder method)

I

 	

 	io (GenericNodeBuilder attribute)

S

 	

 	set_node_output() (GenericNodeCommunicator method)

 	

 	start() (GenericNodeCommunicator method)

 Copyright 2014, APT Group, School of Computer Science, University of Manchester and CNRGlab @ UWaterloo.
 Created using Sphinx 1.2.2.

 _static/ajax-loader.gif

_static/comment-close.png

_static/up.png

_static/comment.png

search.html

 Navigation

 		
 index

 		Nengo SpiNNaker 0.0a1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, APT Group, School of Computer Science, University of Manchester and CNRGlab @ UWaterloo.
 Created using Sphinx 1.2.2.

_static/file.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

_static/minus.png

